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Abstract 

The nonlinear interactions that evolve between a planar or nearly planar Tollmien- 
Schlichting (TS) wave and the associated longitudinal vortices are considered theoreti- 
cally, for a boundary layer at high Reynolds numbers. The vortex flow is either induced 
by the TS nonlinear forcing or is input upstream, and similarly for the nonlinear wave 
development. Three major kinds of nonlinear spatial evolution, Types 1-111, are found. 
Each can start from secondary instability and then becomes nonlinear, Type I prov- 
ing to be relatively benign but able to act as a pre-cursor to the Types 11, I11 which 
turn out to be very powerful nonlinear interactions. Type I1 involves faster stream- 
wise dependence and leads to a finite-distance blow-up in the amplitudes, which then 
triggers the full nonlinear three-dimensional triple-deck response, thus entirely altering 
the mean-flow profile locally. In contrast, Type I11 involves slower streamwise depen- 
dence but a faster spanwise response, with a small TS amplitude thereby causing an 
enhanced vortex effect which, again, is substantial enough to entirely alter the mean- 
flow profile, on a more global scale. Streak-like formations in which there is localized 
concentration of streamwise vorticity and/or wave amplitude can appear, and certain 
of the nonlinear features also suggest by-pass processes for transition and significant 
changes in the flow structure downstream. The powerful nonlinear 3D interactions 11, 
I11 are potentially very relevant to experimental findings in transition. 

This research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract No. NAS1-18107 while the author was in residence at the Institute for Computer Applications in 
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 

Experiments in boundary-layer transition tend to show that, depending on the in- 
put amplitude and spectrum of the disturbance upstream, a two-dimensional Tollmien- 
Schlichting (2D TS) incident wave readily succumbs to  3D secondary instabilities down- 
stream which then induce fully 3D nonlinear responses in the subsequent transitional 
boundary-layer flow: see, e.g., Arnal’s (1984) review. The resonant-triad nonlinear mech- 
anism (Craik 1971, Smith and Stewart 1987) provides one theoretical explanation for 
this nonlinear 3D interaction for low input amplitudes. Also on the theoretical front, for 
boundary-layer transition, is the related work by Hall and Smith (1984, 1988a) on oblique 
TS input or incident vortex flow with nonlinear interaction, while Benney and Lin (1960) 
make other interesting suggestions and Herbert (1984) presents interesting accounts of 
the first, but only linear, secondary 3D phase: see also the criticism in Hall and Smith 
(1988a) and later comments. Again, there are recent analyses tackling the corresponding 
channel-flow nonlinear interactions by Srivastava and Dallmann (1987), Hall and Smith 
(1987, 1988b,c). Our aim in the present theoretical study is to derive the scales, structure, 
governing equations and solution properties for nonlinear 3D interactions set up between 
incident 2D, or nearly 2D, TS waves and their induced vortex motion, in incompressible 
b oundary-layer transit ion. 

As TS waves are involved it is possible, and in some ways natural, to start with 3D 
triple-deck theory (we extend this subsequently) since that is known to identify in a rational 
way the framework of 2D and 3D linear and nonlinear TS waves (Smith 1979, Hall and 
Smith 1984) near the first, lower-branch, neutral station, say for the Blasius boundary layer 
on a flat plate. This theory however also incorporates directly the induced longitudinal- 
vortex motion provided the latter’s streamwise length scale is not excessive, as described 
subsequently. The three regions of the triple-deck structure are the lower, main, and upper 
decks. The lower deck lies closest to  the plate surface, inside the boundary layer, and the 
flow there responds to a 3D nonlinear unsteady-inertial-pressure gradient-viscous force 
balance. This deck coincides with the critical layer for very small, linearized, disturbances, 
although our emphasis here is necessarily on the nonlinear range. Above the lower deck the 
motion in the main deck spanning the boundary layer is displaced simply in a quasi-steady 
planar fashion, due to the lower deck, and the displacement effect is thereby transmitted to 
the upper deck lying outside the boundary layer. There the inviscidly provoked pressure 
response has to be consistent with the wall pressure driving the lower-deck flow, thus 
producing viscous-inviscid interaction. The whole nonlinear evolution is governed mainly 
by the flow features in the lower deck, where the nondimensionalized velocity components 
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and pressure have the form 

(1.la) 

in terms of the nondimensionalized local coordinates and time 

Here Re e-8 is assumed large, in tune with the large experimental values of the global 
Reynolds number Re of interest, and our attention is focussed initially around a typical 
O(1)  station x = xo > 0 , z  = zo on the plate Y = 0,z > 0, the undisturbed flow being 
predominantly in the x direction and giving an 0(1) skin-friction factor X locally at zo, zo. 

With (l.la,b) holding, the Navier-Stokes equations reduce to the 3D unsteady interactive 
boundary-layer equations for u, u,  w ,  p as functions of X ,  Y, 2, T in the lower deck, subject 
among other conditions to matching with the displaced main-deck solution. The unknown 
displacement oc - A  involved there is related to the unknown pressure p in (1.la) by the 
upper-deck properties applying outside the original boundary layer. 

This nonlinear interactive system is addressed in Section 2 with regard to vortex/TS 
interaction at  reduced amplitudes; three principal types (1-111) of interaction are identi- 
fied, in fact, and we choose to concentrate first on “Type I.” If the input amplitudes are 
sufficiently low, on the other hand, nonparallel-flow effects due to the slow variation of 
X with z matter considerably and structural scales different from those in (l.la,b) come 
into play, as described in Section 3. These scales are derived from an adaptation of those 
above; alternative derivations come from the related Hall and Smith studies (1984, 1988a, 
and work in progress). Another point of note here is that our concern is with spatial 
evolution. This seems to tie in better with the experimental and real-life behavior than 
does a temporal-instability analogy of the sort used by Herbert (1984) for example, who 
also makes the irrational shape-factor assumption for the 2D TS contribution as opposed 
to the present rational approach based on nonlinear evolution equations for both the TS 
wave and the induced vortex pattern. 

The flow properties resulting from the vortex/TS nonlinear interaction equations de- 
rived in Sections 2,3 are considered in Section 4. The flow-structural analysis and results 
in Sections 2-4 are specifically for “Type I” interactions in which the typical streamwise 
( X )  variation is relatively slow, as is the spanwise (2) variation associated with an almost 
2D input upstream, producing a “warped” effect. Faster streamwise responses lead to the 
“Type 11” nonlinear interaction discussed in Section 5 ,  while faster spanwise dependence 
leads to the “Type 111” interaction which is described in Section 6. Further discussion 

of these and other aspects is presented in Section 7. The Type I vortex/TS interaction, 
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for instance, which we study first, is found to provoke either a finite-distance breakdown 
or a long-distance sustained effect, both of these producing a marked alteration in scales 
and hence structural change downstream and possibly leading on subsequently to  Type I1 
and Type I11 interactions. Further, the Type 11, I11 interactions turn out to be much more 
powerful than the Type I interaction and suggest (e.g.) streak-like formations downstream, 
associated with local spanwise concentration of the streamwise vorticity and the TS am- 
plitudes. Both Types 11, I11 are potentially very relevant to  the experimental findings as 
(unlike other theories) they lead to complete alteration of the mean-flow profiles. 

2. THE TRIPLE-DECK VERSION FOR WARPED TS-VORTEX INTER- 
ACTION (TYPE I) 

We start by posing the triple-deck problem which governs the linear or nonlinear evo- 
lution of 2D and 3D TS waves and their mean-flow effects, initially at least, and which 
stems from substitution of (l.la,b) into the Navier-Stokes equations. This requires us to 
tackle the unsteady 3D nonlinear interactive boundary-layer equations 

U X + V Y  + wz = 0, 

UT 

(2.14 

U U x  -I- VUY 4- W U z  = -Px(x, 2,T) -k UYY,  (2.lb) 

WT -k U W x  -k V W y  + W W z  = -Pz(x, 2, T) 4- W y y ,  (2.lc) 

(p, A) (X, 2, T) subject to the boundary conditions 
describing the lower-deck response, in scaled form, for the unknowns (u, v,  w) (X, Y, 2, T), 

u = w = w = 0 at Y = 0, 

u N Y + A(X,Z,T),w 4 0 ,  as Y + 00, 

(2.ld) 

(2.1e) 

I 
Here the normal momentum balance reduces to the usual requirement that ap/aY = 
0 as assumed in the above, and (2.ld-f) represent in turn the no-slip condition a t  the 
wall, the displacement effect (a -A, unknown) on the main-deck motion further from 
the wall, and the pressure-displacement interaction with the flow outside the boundary 
layer, produced via the upper deck where linearized potential-flow theory holds, yielding 
the double Cauchy-Hilbert integral relation shown. This relation can be replaced by the 
complete upper-deck formulation of solving Laplace's equation for the pressure, f j  say, 
with f j  zero in the farfield (X2 + g2 + 00) and equal to p(X, 2, T) at the wall (6 + O + ) ,  
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where also the gradient aj/aS is to equal d2A/aX2(X, 2, T), in terms of the upper-deck’s 
scaled normal coordinate $. The nature of the triple-deck flow in (2.la-f) appropriate to 
nonlinear interaction between a warped 2D TS input wave and its induced vortex flow is 
discussed here, with the next section then considering the required extension of the theory 
to encompass global nonparallelism effects. 

The starting point is that the interactive triple-deck system (2.1) captures traditional 
linear TS waves (Smith 1979) as small unsteady perturbations of the basic boundary-layer 
shear flow u 0. The waves are stable or unstable for a prescribed 
scaled input frequency SZ according as flj &(= 2.30), where the critical frequency n = f l c  
defines the lower branch of the neutral curve for the boundary layer. Near the critical 
frequency, or equivalently, near the critical station xo = x, for an imposed dimensional 
frequency, interplay usually occurs between nonlinear amplitude-dependent effects and the 
relatively weak initial growth/decay present, for a small 2D or 3D disturbance. Supposing 
the specified input disturbance amplitude to  be h, relative to the normalized form (2.1), 
and the input wave to be almost 2D, with a small “warping” factor p say, so that the 
characteristic 2-variation has dz - p, we argue by orders of magnitude as follows (see also 
Fig. 1). The vortex flow produced by the small warped-TS wave arises from inertial forces 
as an amplitude-squared response but with the w-component of the vortex multiplied also 
by p, since the typical TS w-velocity is reduced to O(hp),  thus reducing the the inertial 
secondary forcing to O(h2P) via contributions such as u d w / d X .  That O(h2P) w-component 
in the vortex flow grows logarithmically with large Y, however, due to the decreased inertial 
reaction of the vortex. So an outer buffer zone is brought into play. This has Y-extent 
of order k-b to bring about an inertial-viscous balance for the vortex, i.e. balancing Yk 
against a: because of the basic shear (u = Y) and the unknown slower X-variation ax - k 
(say) in the vortex flow due to the slight warping present. In the buffer zone the vortex 
velocity w is still O(h2@), apart from a logarithmic factor, and so continuity suggests a 
vortex u-component of size p2h2/k  (giving ux - w z  - p2h2) and hence a shear-correction 
effect du/aY of order P2h2/k%. Our reasoning then is that a sensitive interaction is likely 
to take place when the three relative corrections, O ( P 2 )  from the warping, O(h2) in the 
traditional nonlinear amplitude-cubed feedback, and O(p2h2/k i ) ,  due to the nonlinearly 
induced vortex shear, are comparable. So the regime 

Y , v  = w = p = A 

p - h,k - hS (2.2)’ 

is indicated as a central one, which we take as defining “Type I” interactions. Other 
regimes of the warping factor /? and the streamwise-variation factor k can be examined 
but they may be regarded either as extreme limits of that in (2.2) or as distinct ones. In 
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fact a matter of significance a t  this stage concerns the small order h3 in (2.2) corresponding 
to the Type-I streamwise variation. This is formally less than the traditional influence of 
relative size h2 usually associated with amplitude-cubed nonlinear spatial evolution in a 
purely 2D input wave. That aspect leads on to the study of the alternative Type I1 and 
Type I11 interactions as described subsequently in Sections 5,6. 

(a) The near-wall zone. 

Guided by the ordering arguments above, the pattern of the flow solution in the near- 
wall region where Y is 0(1) has 

v = hV1+ h2V2 + h3V3 + h4V4 + h5V5 + * * a ,  

w = h2W1 + h3W2 + h4W3 + h5W4 + h6W5 + . . e ,  

p = hP1+ h2P2 + h3P3 + h4P4 + - - - , 

(2.3b) 

( 2 . 3 ~ )  

(2.3d) 

A = hA1 + h2A2 + * - , (2.3e) 

along with the extra scaling 

Here (VI, VI, W1, PI) represent the slightly warped 2D TS input wave, ( U2, V2, P2) are mean- 
flow correction and second-harmonic effects that are quasi-planar, similarly (Us, V3, P3) 

include the amplitude-cubed forced TS response, while the induced-vortex motion is rep- 
resented in the terms XSY and Us, V,, W ,  and is independent of the faster scales X ,  2'. The 
induced shear X~(x,z) is an unknown feedback effect from the outer buffer zone which is 
studied subsequently in (b). In addition, a streamwise scale X1 z h2X for the modulation 
of the TS amplitudes due to essentially 2D nonlinear forcing is absent here (except in the 
phase, see below), leaving the slower scale x ( ~  h3X)  to operate on the TS modulation 
in which the nonlinear TS/induced-vortex interplay is set up. An assumption of near- 
criticality, e.g. 0 = fZc + O(h2) or xo = xc + O(h2) in unscaled terms, is also implicit here in 
view of the relatively small amplitude growth present initially. The disparity in certain of 

the velocity scales in (2.3), e.g. in the main TS contributions Ul, VI, W1 and the induced 
vortex contributions U5, V5, W2, is caused by the input warping defined in (2.2), (2.4). 

The dominant governing equations that we need to address are obtained formally from 
substitution of (2.3), (2.4) into (2.1) and are the following: first, for continuity 

UlX + VlY = 0, ( 2 . 5 ~ )  
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u2x + V2Y = 0, 

usx + v3y + W1Z = 0; 

(2.5b) 

( 2 . 5 ~ )  

second, from the X-momentum balance, 

UlT + YUlX + Vl  = -p1x + UlYY, ( 2 . 6 ~ )  

U3T + YU3x + X S Y  UlX+ [ Ul u2x+ u2 UlX +Vl U2Y + v2 UlY ] + v3+ Vl A3 + W l  u1z = - P3x + u3yy ; 
( 2 . 6 ~ )  

and, third, in the 2-momentum balance, 

WlT + Y W l X  = -P1z + w 1 y y ,  ( 2 . 7 ~ )  

[ U W l X  + V W l Y ]  = W2YY.  (2.7b) 

In (2.7b), only the induced-vortex terms, which are independent of the fastest scales X, T, 
are retained. Further, the successive governing equations in (2.5) - (2.7) show the grad- 
ual intrusion of three of the four major influences present, the warping through the 
variations, the amplitude-squared, -cubed, -etc., nonlinear responses and the feedback 
induced-vortex-shear contributions through the X S ( ~ ,  z) factors, but not yet the stream- 
wise modulation in x which acts more significantly in (b) below. 

The velocity and pressure fields above can be written now in component form, 

and so on, and the solutions for the various components are obtained in sequence. Here 
the powers of 

E = exp[i(crX - nT)] (2.9) 

present contain all the fast dependence, with the main wavenumber a and frequency $2 
being assumed real (see (2.12) below), so that the unsteady flow solution is near neutral. 
Also C.C. or, later, an asterisk denotes the complex conjugate function. The dominant, 
almost planar, TS wave is then controlled by the equations and constraints 

iaU11 + V1,y = 0, (2.1 oa) 

-inu,, + icrYU11+ VI, = -iaP11 + u11yy, 

U11 = VI, = 0 a t  Y = 0, Ull -+ All as Y -+ 00, 

(2.10b) 

(2.10c, d )  

6 



Pl1 = (2.1Oe) 

from (2.5a), (2.6a), with (2.ld-f), and (2.10a-d) yield the shear-stress solution 

(2.11) 

where the subscript zero refers to evaluation at  € = €0 = -(ia) in /a ,  in denotes exp(inr/2), Ai 
is the Airy function, and K = J;Ai(s)ds .  Hence the pressure-displacement law (2.10e) 
leads to the eigenrelation 

1 4  
= Aib/n (2 * 1 2 4  

between a, n. Both of these are real as required only for the values €0 = -dl i$ ,  Ai; /% = 

d2ib[dl w 2.30,dz w 1.001, i.e. the values 

a = d ; , n  = d l d j  (2.12 b) 

are fixed. The fundamental pressure amplitude P11(x, z, . e )  remains undetermined at  this 
level: see also (2.14)ff below. In addition, the spanwise velocity component W11 associated 
with the incident TS warping is only a passive response so far, given by 

Wll = P,,zL(E)/( ia)% (2.13) 

from (2.7a), where L is the solution of L" - ( L  = 1, Lo = L(o0) = 0. 
Moving on to the second-order responses, we may proceed similarly to determine 

U20,21,22 from the component equations inferred from (2.5b), (2.6b), which again are quasi- 
2D. The working for the forced second-harmonic TS term U22 and the forced mean-flow 
correction U2, has been done before, however, by Smith (1979), giving in particular V20, P20 
identically zero but UZO, A20 nonzero. The un-forced extra fundamental which may be pro- 
duced here for compatibility at higher order simply has (U21,V21,A21) equal to P21/P11 
times (U11, V'1, Al l )  with P21 still unknown. 

The third-order working for U3,V3 components is then as in Smith (1979) except that 
they feel the additional influences of the input warping, in the two a/aZ terms in (2.5c), 
(2.6c), and of the induced-vortex flow, in the two X3 terms in (2.6~).  With the warping and 
vortex influences incorporated, then, the E-components contained in those two equations 
lead, through a compatibility requirement, to an amplitude-modulation equation part of 
which can be picked out from the above paper or from Hall and Smith (1984). We find 
therefore the modulation equation 

I 

I 

(2.14) 
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for the unknown TS pressure amplitude P11, on use of (2.13). The coefficients involved 
here, 

2 = 2Di(oa2Aio/3AaAib - 513, ;1! = 1/8a2, (2.15~2, b) 

2 = iZrlii, f = alii, ii = -i(2 + 3)/a ,  (2.15c, d, e) 
6 

are in keeping with those in the previous studies mentioned earlier, for small p, with &l 

(complex) representing the effective wavenumber shift and a1 the Stuart-Landau constant 
for the pressure. Also D ia. Clearly, the effects of the induced-vortex 
motion and the warping on the TS wave are represented by the terms in A3 and a2/az2 in 
(2.14). The other term on the left in (2.14) is the relatively fast phase effect noted earlier, 
corresponding to an extra exp(iaX1) factor necessary in PI1 where the phase a is real and 
constant, or associated with a contribution h2ia added to the streamwise variation in (2.4). 
This does not affect directly the vortex properties below and indeed u could be absorbed 
into the term 2 in (2.14). 

Lastly here, the driven vortex motion in (2.7b) needs to be addressed. The relevant 

1 + n&/Aib, A 

Eo-components give the equation 

(2.16~) 

for W20, which is subject to 

W20 = 0 a t  Y = 0,W20y + 0 as Y + 00. (2.16b, c )  

Due to the forcing terms in (2.16a) decaying algebraically like Y-' at large Y (from (2.13)), 
the integration for W20 is found to produce the logarithmic-growth result 

where the constant q3 is to be determined numerically from (2.16a-c). The behavior (2.16d) 
and the corresponding growth oc YlnY, Y31nY in V!O, u50 are responsible for the strength 
of the induced-vortex flow set up in the outer zone discussed next. 

(b) The outer-buffer zone. 

In the buffer zone Y is larger, Y = h-'T with T of order unity, and the flow solution 
is of the form 

v = -AlxT + h(Q1- A2xYY) + * * * + h3v3 + - , (2.17b) 
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(2.17~) 

with the pressure p and displacement - A  remaining as in (2.3) of course. Here the unknown 
induced-vortex contribution of interest is represented by (us, vg, wg), dependent mainly on 
X ,  Y, 2; although logarithmically larger vortex velocities (wgL and similarly in u, v ]  are 
also provoked, we note, these react only passively to the forcing present in the matching 
constraints for + O+ due to (2.16d), analogous to those in the related studies mentioned 
earlier. Further, the momentum balances in (a) above show that Q1 E -PIX - A ~ T  and 
C1, R1 satisfy Clx = -Plz, Rlx + Clz = 0, i.e., 

1 
w = h3(tnh)w3L + hS(C1Y- + w3) + * ' - , 

--- 

&11 = -i~rP11+ inA11, i~rC11 = -Pl,,, iaRl l+  CllZ = 0, (2.18) 

in component form. 

trivially satisfied but the Eo-components require the vortex motion to satisfy 
Most of the leading-order balances that result from substitution of (2.17) into (2.1) are 

u3y + V 3 T  + w3y = 0, (2 .19~)  

Yu,y + vg = U g y y ,  (2.19b) 

yw3x  + az(lPll12)/~2 = w3yy, (2.19~) 

after some manipulation of the forcing terms involving (2.18). The boundary conditions 
on (2.19a-c) are 

u3 = v g  = 0 at Y = 0, (2.19d) 

ws - az(IP1112)[-tnT+ $1 as T+  o+, (2.19e) 

- 
- 

- 

(2.19f) 
-3 u3y -, 0, w3 -, O(Y ) as Y + 00, 

where (2.19d,e) merge the solution with the near-wall vortex form in (a), e.g. in (2.16d), 
while (2.19f) achieves the outermost displacement behavior of (2.1e) as required. In con- 

trast with the mostly viscous response of the vortex motion in zone (a), i.e. in (2.16a), the 
vortex here in zone (b) reacts in a viscous-inviscid fashion through (2.19a-c), in response 
to the warped-TS-forcing (a IP111') acting in (2.19c,e). The forced vortex flow in (2.19a-f) 
produces the (unknown) wall-shear contribution referred to earlier, 

X g r + u g a t F = O + ,  (2.20) 

which then helps to drive the TS amplitude Pll (via (2.14)) which in turn drives the 
vortex flow (2.19), and so on, thus producing nonlinear interaction between the warped 
TS disturbance and the induced vortex. 

The nonlinear TS/vortex interaction found, as represented by (2.14), (2.19a-f) [with 
q$ determined from (2.16a-d)], is studied further in Section 4, after the extension of the 
theory which is described next. 
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3. EXTENSION OF THE THEORY TO INCORPORATE NONPARALLEL- 
FLOW EFFECTS (TYPE I) 

The influence of the nonparallelism of the basic boundary layer is secondary within 
the scope of the triple-deck scales leading to (2.1) because the latter’s streamwise length 
scale [see (1.1)] is typically O(es), much less than the 0(1) length usually associated with 
the basic nonparallelism. The difference diminishes however for the reduced O( h)-sized 
disturbances considered in Section 2, since their main modulation length becomes extended 
to O(h-’) times the e3 scale, from (2.4), while the characteristic nonparallel-flow length 
scale contracts, to O(h2), in view of the shift away from the neutral position. Hence, 
formally, the two length scales can become comparable if the disturbance amplitude h is 
reduced to 

3 
h w e m , m = -  5 ’  ( 3 4  

with significant nonparallelism then entering the fray. Strictly, the setting of h as an inverse 
power of the Reynolds number here requires us to start again from scratch, replacing 
(l.la,b) by a new expansion as implied by (2.3) with (3.1) inserted and similarly in the 
main and upper decks, as well as in the extra buffer zone indicated in Section 2. But 
the only new substantial effect to come into play then is that corresponding to the global 
nonparallelism (involving A1 E dA/dz  at 5 0 ) .  So we may cut matters short simply by 
adding in that effect to the previous working, along with (3.1), in retrospect. Here again 
the additional term involved may be picked out from the Hall and Smith (1984) study, so 
that the new equation for the warped-TS amplitude is 

when (3.1) holds, with (2.19) remaining intact. In (3.2) 6 = A12 captures the nonparallel- 
flow effect. The TS/vortex interaction is thus controlled by (2.19), (3.2) in the regime 
defined by (3.1), as distinct from (2.19), (2.14) which apply for the higher-amplitude 
regime where 1 >> h >> srn in effect. 

I 

4. NONLINEAR INTERACTION PROPERTIES (TYPE I). 

The warped-TS/induced-vortex interaction of Type I is governed by the nonlinear 
linked p.d.e. system implied by (2.19), (3.2): 

( 4 . 1 ~ )  

(4.lb) 
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subject to 
W "a,(lP12){-e72Y+r$},r~+O, asY+o,  (4.1~) 

(4.ld) r --+ O,W -+ 0, as F +  00, 

for the vortex, coupled with the TS amplitude P which is controlled by 

where the vortex skin-friction factor A3 is 

X3  = r ( j i , o , z ) ,  

(4.le) 

(4.U 

and with r$ determined from integration of (2.16). The coefficients involved are given by 
c1 oc (2 - 2'0) and 

( 4 4  
c2 = c3 = -0.375 + 0.1172',c4 = -0.0156 + 0.04652' 

~5 = -0.719 - 0.7662', r$ = 4.15, 

from a computation of (2.15), (2.16) with (2.21b). Also we have introduced r a U / a y  
to obtain the W - r formulation above instead of the U - V - W version earlier. Here 
U, V, W are related to be velocities us, vs, ws of Section 2, while P is related to PIl, and in 
the context of Section 2 the factor X I  is replaced by zero, thus suppressing the nonparallel- 
flow effect, as opposed to  positive or (more likely) negative values of A 1  which incorporate 
nonparallelism as in Section 3. 

Computational studies of (4.la-f) with (4.2) for various starting conditions upstream 
were made by use of a spectral method analogous to the treatment in Hall and Smith 
(1988a) except that for the vortex part (4.la-d) we applied an implicit scheme like that in 
Hall and Smith (1988~) and the updating of P through (4.le) was done differently, via a 

Newton iterative procedure. An alternative formulation in terms of an integral equation 
for A3  (see Appendix A) was treated in the same iterative way, yielding similar trends. 
The results are summarized later on. 

We consider analytically now possible ultimate forms of the nonlinear interaction as 2 
increases. It is useful to express P in polar form first, P = rexp(i0) with r,O real, so that 
(4.le) is replaced by the two real equations 
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linked with (4.la-d,f) by IPI2 = r2.  Then one possibility (option 1) suggested by related 
studies is that of a nonlinear exponential interaction continuing to downstream infinity, 
giving the response 

as 2 + 00, with s an unknown positive constant. From (4.3) r , ,8 ,  must satisfy 

2 (4.5b) 

where XJW cx (r&)m is 7, a t  y = O+ and T,, W, are controlled by forced Airy equations, 
the solutions of which can be written down explicitly. The coefficients involved in (4.5a,b) 
[see (4.2)] however are such that (4.5a,b) admit no positive solutions for rL,BLZ, and 
hence the nonlinear exponential response seems to be ruled out. This conclusion might be 
avoided if the z scale also decreases appropriately, we note. 

A second option to consider is the 2D equilibrium solution where, in the shorter-length 
case of zero A1 for example, /PI = r is a constant, say r -, ro where from (4.3) rz = -clr/c6r 
is positive and consistent with the value -cl;/cgi by virtue of the absorbed phase shift u. 
This 2D equilibrium is nominally an exact solution for all 2, with zero induced-vortex 
flow, but it is unstable to 3D perturbations. For, if t = to + & I ,  8 = 661 with 6 small, then 
(4.1), (4.3) yield the linearized system 

2 0 = c ~ ~ X ~ ~  - ~ ~ ~ 8 , ~  + CS;~,, 

W1W - FWl* = 2r0r12/y2 ,  (4 .6~)  

- 
T1= - Y T 1 *  = -W1z, (4.6b) 

T ~ T  -+ 0, W1 - 2ror1z{ -tnF + 4} as F -+ 00, (4.6~) 

0 = clrr1 + C3rX31rO + C4rrlm - c4i7081m + 3C5rror1, 2 (4.6d) 

0 = c1;rl + c3iXslrO + c4;rl= - c4rr~el= + 3 c ~ , r ~ r l ,  2 (4.6e) 

with (W,T) w b(W1,~1),X31 = ~l(k,O,q, and W1,~1 to vanish as y +  00. The solution of 
(4.6a-c) may be decomposed in the form 

and similarly for Wl, T ~ ,  X31, dl and then the vortex solution is given by 
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(4 .8~)  

?1 = 2=f-H7J2roQv(~), 

a -2 
where BIAi(0) = (tn7)/3 + and BzAi'1(0) = 1/(3Ai(O)). Hence i 3 1  = 2 T T p  ro?lN(O) 
with N ( 0 )  = -el - e2ln7 and el = 1.21 + 0.734,ez = 0.243, after some working. Then 
(4.6d,e) yield two coupled equations for ?1,&, and for these to have a nontrivial solution 
the eigenrelation 

(4.94 -2 
P [ (Cir  + + 2r:(csr~4r + c S i c 4 i ) ~ % ( e l +  e2ln~) l  = 2 7 : ( ~ ~ 4 r  + c5ic4i) 

must hold, determining the 3D spatial growth rate 7 in terms of the input 2D amplitude 
ro and the scaled spanwise wavenumber p. With the numerical values in (4.2) inserted 
into (4.9a) we then have the relation 

T ; ( e l  + e2tn,7) = -dl/rt - d 2 / p 2  (4.96) 

for T ( r 0 , n  where the constants el,eZ,dl!,d2 are all real and positive. See Fig. 2. Positive 
growth factors 7 exist for all nonzero rc,,p, the maximum growth factor being for large 
ro, p where 7 approaches the value exp( -e1/e2) from below. Thus secondary 3D instability 
occurs for the 2D equilibrium state. 

The secondary 3D modes given by (4.!3b) are completely absent in the undisturbed state 
of steady Blasius flow, we observe, since then (4.9a) is simply replaced by $(c:, + cL) = 

(ClrCqr + clicli) or T1 E 0. The above secondary instability and those to be found in 
Sections 5,6 form some connection with Squire-mode destabilization (e.g., Herbert 1984, 
and see below), and the present one applies similarly to the nonparallel case XI # 0 and 
rules out the 2D possibility as a terminal response of the full interaction. In addition the 
dependence of 7 on p tends to suggest that some spanwise focussing may be significant in 
the full nonlinear system (4.1). 

Third, there is the possibility of the nonlinear interaction continuing to downstream 
infinity in an algebraic form, The orders of magnitude present then suggest that 

w - k-+@ + - ' - , (7,  A,) N 8(?, i,) + * * * , (4.10a, b) 

r = /PI - 2- ( enj3r) - L- a r (z ) , e - i ( z )  +..- (4.10c, d)  

as 2 + 00, with the Z scale contracting such that Z = 8-iZ with 6 of O(1). Hence the 
vortex equations become, with r ]  = Y / X s  of order unity, 

- * 1  

a2@/av2 + (r]2/3)a@/i3r] - (r]2/2)a@/a6 + (r]/6)@ = 0, ( 4 . 1 1 ~ )  
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aZ?/aq2 + (?/ . ' /3)a?/aq - (qZ/2)a?/aZ - q? = -aW/aZ, (4.1 1 b) 

subject to 
I? = [ d ( F 2 ) / d 6 ] / 3 ,  a?/& = O,? = i 3  at q = 0, 

I?+ 0, i + 0 as ?/. -, 00, 
(4.1 l c )  

(4.1 Id) 

and coupled with the TS equation 

0 = (CZX1 + &)F + C,d2F/dt' (4.11 e) 

where k iexp(ii) .  The TS-forcing of the vortex motion now appears only through the 
inner restraint on in (4.11c), while the vortex forcing on the TS wave is due to the i 3  

term in (4.11e), and it is seen also that the amplitude-cubed TS effects become secondary in 
this type of spatial evolution. The solution of the vortex part (4.11a-d) leads to an induced 
skin-friction factor which enables (4.11e) to be written as an integro-differential equation 
for F (21, 

(4.12~) 

?, = p 1 2 ,  (4.12b) 

where 5 = 2/[3%I'(1/3)] is a positive constant and symmetry about H = 0 is assumed for 
convenience. The next question is whether an acceptable solution exists or not. Finite- 
difference computations have been performed for (4.12a,b) and these all suggest that there 
is no solution smooth for all Z. Analytically, the large -161 behavior poses difficulties 
since the main suggested asymptote there, ?, - ks2' with k3 a positive constant, makes 
the integral in (4.12a) positive, so that the square-bracketed term cannot tend to zero 
then. Instead the solution appears to hit a singularity a t  finite Z = 20- in which ?; tends 
to infinity like (& - H ) - g ,  and this seem in line with the computational findings. The 
singularity cannot be smoothed out locally, it seems, and so option 3 fails in that sense. 

The fourth option is that the nonlinear interaction (4.1) terminates in an algebraic 
breakdown a t  a finite distance 8, say as k + 8#-. The vortex part suggests that, in 
terms of order of magnitude, - (k, - k)t, W - r 2 Z  and hence 
the dominant effects in the TS part are due to the c3,c4,c5 contributions, giving terms - r 3 ( k ,  -2) , r r 2 ,  r3 respectively. For these to be comparable z - (8, -8) 5 - r-l. 
This indicates that the breakdown as k + 2*- takes the form 

-1 -2-2 , 7 - A3 - r2Y Z 

2 - 2  

W - (2, - k)%-W, (7 ,  A,)  - (2s - k)-W(t,  i3), (4.13a, b)  
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to leading order, focussed near z = z, say with 

and y = (2, - * ) t i ,  L zz -ln(k, - k), the extra logarithmic factors here and in (4.10) 
being required by the inner condition in (4 .1~) .  The coupled local governing equations and 
constraints are, from (4.1), 

a"/afi2 - (fi2/3)afi/afi - (f i2/3)af i /a2 - f i f i  = 0, ( 4 . 1 4 ~ )  

d2?/afi2 - (fi2/3)a?/afi - (fi2/3)a?/a2 - (2fi/3)? = - d W / a 2 ,  

I@(=, 2) = ?(m, 2) = (a?/afi)(O, 2) = I@(O,2) - (i2)'/3 = ?(0,2) - i 3  = 0 

(4.14 b) 

(4.14~) 

for the vortex motion, and 

(4.1 4e) 

for the TS part. Here once again the TS-forcing on the vortex motion appears only 
through the inner condition, in (4.14c), with the vortex forcing on the TS wave appearing 
via is in (4.14d,e). In contrast with the previous possibility however the amplitude-cubed 
TS contribution here is a primary effect. The solution of (4.14a-c) can now be used to 
express fi3 as an integral involving (?')'' and from this and (4.14d,e) we obtain the integro- 
differential equation 

(4.15) 

1 with 2, = 1fiI2 and f i (2)  ?exp(iB), while 5 = 3a/I'(1/3) is a positive constant and again 

symmetry about 2 = 0 is assumed. The issue therefore depends on whether (4.15) admits 
an acceptable solution or not. We note that as 121 + 00 matching could be achieved with 
the flow solution outside, since then (4.15) suggests the behavior i; oc 121-l and hence 
P, W, etc., become 0(1) when z - z8 is O(1).  Finite-difference computations performed 
for (4.15) suggest the same conclusion as for option 3, however, namely the occurrence 
of a singularity a t  finite distance, this time with 5 tending to infinity like (20 - 2)-! as 
2 -+ 20-, say. Again the singularity seems non-removable, thus ruling out option 4. 

The third and fourth possibilities above both represent the formation of concentrated 
tongues of high vorticity and/or TS amplitude. 

Option 5 for the present interaction is that the zero state is approached far downstream, 

(4.16) 
with 

( w , ~ , P )  -+ 0 as k -+ 00. 
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The stability of this state can be analyzed as for option 2, thus leading to (4.6) in the 
zero - A1 case but with ro replaced by zero. Hence a t  large 2 say A31 is zero as well and 
no growth of the perturbation is possible as anticipated in earlier comments. The option 
(4.16) means that the Type I interaction peters out but that may in turn allow the Type 
I11 interaction addressed in Section 6 below to be set off subsequently further downstream, 
since the Type I11 involves smaller TS amplitudes. 

The sixth option to consider has a finite-distance singularity in which the TS pressure 
remains finite but exhibits a singular behaviour in its gradient, as distinct from the strong 
singularity proposed in option 4. This option follows from a simple exact solution which 
is a generalization of the 2D one mentioned earlier to include a single spanwise-mode 
dependence, P = Po(%) e x p ( i p 3  or r = Ro(k),O = oo(k) + Dz, say. Here there is no 
induced vortex W - T flow, only the free W - T flow due to the input upstream, giving the 
skin-friction effect A 3 ( k , a  in general. The solution fits together if Xs is independent of 
2 since then satisfies 
- 

o = [Clr - c 4 r P 2  + ~ 2 r ~ 1 2  + ~ 3 r ~ 3 ( 2 ) ]  ~0 + ~ 5 r ~ 0 3 -  (4.17) 

Hence as 2 increases the amplitude & can hit zero in a square-root fashion if X 3 ( 2 )  goes 
sufficiently positive that the square-bracketed term above approaches zero. An extension 
to the general case of (4.1) may be made next (see also Fig. 3). The proposal then is that 
as k -, ka- for some finite station ks the irregular response 

= X s O ( Z )  + (28 - % ) A 3 1 ( q  + o(%a - 2): (4.18 b) 

is encountered. This is consistent with (4.1) provided that the successive equations 

o = [ c 1 +  ~ 2 x 1 2 8  + C S X S O ( Z ) I P ~ +  C~P: + ~ 5 [ 2 1 ~ o l ~ ~ 1  + p,"~;] (4.19b) 

0 = [CI C 2 X 1 k a  C S X S O ( Z ) ] P ~  [ - C Z X L  C ~ X S I ( Z ) ] P O  

+c4P," + C5[21PoI2P2 + + P,"P,' + 2 P O l P 1 I 2 ]  (4.19~) 

hold for Po, Pl, P2 in turn. Here the vortex skin-friction factors X30, A31 remain arbitrary 
in the sense that they depend on the history of the flow upstream, and this arbitrariness 
makes the solution of (4.19a-c) difficult in general. As a model however suppose that As0 

is constant and the coefficients c,(n = 1 + 5 )  are real. Then a solution of (4.19a) has 
Po equal to a real constant, while (4.19b) allows Pl oc sin(& with p 2 c 4  = 2 c 5 P ;  and a 
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solution with the same periodicity requirement in 7 can be found for P2 in (4.19~). Hence 
the terminal form then is self-consistent. This model can also be enlarged to allow the c, 
values to  be complex as in (4.2), and other models support the proposal above. Another 
enlargement possible has spanwise focussing where the 7-scale shrinks like a power of 

k8 - 2 at the singular station and thifs appears to fit together as well. 
The overall interpretation for this option 6 is that the induced-vortex skin friction 

can act to  produce an irregular response in the TS amplitude, without a corresponding 
irregularity in the vortex motion. Further, the dependence on the history of the induced- 
vortex motion emphasizes the role of the upstream starting conditions in determining 
whether option 6 arises or not. 

The computations referred to earlier seemed to confirm the availability of option 5, 

but they were not conclusive with regard to option 6. In particular it proved difficult to 
distinguish between numerical divergence of the iterative procedure used and appearance 
of a genuine square-root irregularity in the solutions. Failing other options (1-4 above 
and certain other ones tested), we tend to the view however that options 5,6 are the only 
ones attainable via the nonlinear interaction (4.1). The other options are associated with 
by-pass transitions: see Section 7. 

The spanwise dependence in option. 6 again allows streak-like formations to appear, 
although less firm than in the options 3,4 in Hall and Smith’s (1988a) interactions and in 
the Type I1 interaction below. Option 6,  with its shortening length scale streamwise, can 
lead into the type I1 interaction, which is studied next. 

5. “TYPE 11” INTERACTIONS 

The earlier arguments for Type I interactions may be modified to account for an alter- 
native, Type 11, interaction as follows (again see Fig. 1). The relative errors referred to at  
the start of Section 2 have the orders 

p2 [from the warping], ( 5 . 1 ~ )  

h2 [from amplitude-cubed feedback], (5.lb) 

p2h2k-g [from the induced vortex shear], ( 5 . 1 ~ )  

h2 [possible from streamwise TS modulation], (5.ld) 

k [from the streamwise vortex modulation], (5.le) 

and in the Type I case above the balance of (5.la-c) holds, yielding (2.2). The present 
alternative interaction (Type 11) occurs for /3 - h again, balancing the effects (5.la,b), 
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but k - h2 now, so that the typical streamwise spatial evolution is faster here. Then the 
vortex-shear effect (5 .1~)  is of order h% and is relatively small, giving a reduced vortex 
influence on the nonlinear TS evolution. 

The Type I1 interaction therefore has 

,L3 - h,k - h 2 , h  << 1, (5.2) 

and it can be seen from modification of the working in sections 2,3 that the new sizes (5.2) 
lead to a TS amplitude equation in which aPl,/aXl replaces the interaction term a A3 

on the left-hand side in (2.14) and absorbs the a-term there also. Hence we are left with 
solving the nonlinear equation 

instead of (4.le), the vortex effect (4.la-d,f) then being of secondary significance. The 
constants c1, c2, c4, c5 are as in Section 4. 

The governing equation (5.3) for the TS pressure P ( . k , q  is a generalized cubic 
Schrodinger or Ginzburg-Landau equation, and its main properties seem to be clear. 
First, the pure 2D version where the c4 term is suppressed produces a supercritical bi- 
furcation, namely that in Smith (1979), Hall and Smith (1984), leading to a saturation 
amplitude downstream as 2 increases: see below. Second, however, the 3D version with 
2-dependence present shows that there is unbounded secondary instability of the 2D state. 
This is due mainly to the coefficient ~ 4 r  begin negative. Thus in polar form P = r exp(iO), 

- 

JXO J 

(5.44 

(5.4b) 

(5.5a, b) 

(5.5c) 

for T beyond an initial station downstream of YO, while if A1 is zero (the parallel-flow 
case) 

r = [clrul exp(2clrk)/{1 - ~ 1 ~ 5 ~  exp(2clrri:)}] + (5.5d) 
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where the constants ul,clr are both positive. The saturated 2D solution downstream 
exhibits parabolic growth ro - ( E 2 / ( - ~ 5 ~ ) ) $  or tends to the constant value ro = roo 
( ~ 1 ~ / ( - ~ 5 ~ ) ) $  as 2 -+ 00. A small 3D perturbation of the 2D solution, 

with spanwise wavenumber p, is then controlled by the linearized system 

(5.7b) 

from (5.4a,b). As posed, the secondary instability problem (5.7a,b) represents a nonparallel 
marching problem in 2 for the spatial evolution of the 3D perturbation, from given starting 
conditions a t  some finite 2 and with r o ( 2 )  specified in ( 5 . 5 ~  or d). Downstream a t  large 
positive k however the 2D equilibrium ro + roo (constant) holds if we focus on the case 
of zero A 1  and there the solution of (5.7) is sought in the form 

I -2 roel = -p cqit-1- p2c4rr0~1 + 2cgirEr1, 

with the spatial-growth factor 0 to be found. In effect, each of the primes in (5.7a,d) is then 
replaced by a factor Q , r m  replaces r o ( k ) ,  and so substituting for $1 from the equivalent 
of (5.7b) into (5.7a) we obtain, for nontrivial solutions, an eigenrelation determining Q in 
terms of p, r ,  which gives 

The maximum spatial growth rate Qr therefore arises at  large spanwise wavenumbers p, 
for which Qr - --clrP2 is large and positive. Indeed, the same large unbounded growth 
also occurs at  finite 2, within the framework of (5.7) (with A1 zero or nonzero), as a 
pronounced short-wave instability. This again raises the possibility of spanwise focussing 
taking place in the nonlinear system (5.3). 

Finally, the fully nonlinear 3D version, in (5.3), produces in general a break-up of the 
nonlinear TS solution within a finite distance, associated with the formation of “vorticity 
tongues.” The break-up, at  the station 2 -+ k8- say, has 

arg P = e - kl.tn(k8 - 2) + i ( i )  .+ - , (5. l o b )  

(5 .10~)  
- 
2 - Z8 = (k8 - 2)%, 
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focussed at  a particular spanwise station z = z8: see Fig. 4. Here IC1 is a constant. So 
the governing equations (5.3) or (5.4) reduce to the nonlinear ordinary-differential system 

1 
2 
-('? + i?') = C4,('?" - ?a') - C4;(2'?'i' + ?i") + CsrF3,  (5.1 la) 

(5.11 b)  

for ?,o. The existence of acceptable solutions of this terminal form (see also Hocking and 
Stewartson (1972) and references therein) is suggested simply by a linearized version for 
example in which the cubic terms in (5.11) are negligible. One solution then has 

(5 .12~)  

and the other solution is expressible in terms of error functions, giving an algebraic O ( 2 - l )  
decay in i at large 121 which matches with the flow solution outside where r is 0(1) at O(1)  
values of Z- z8. Both of the above solutions are acceptable because the coefficient c4, is 
negative. 

The finite-distance break-up in (5.10) - (5.11) is clearly a strong one and it may be 
interpreted as producing strong tongues of concentrated streamwise vorticity and TS am- 
plitudes in the singular form (5.10). New higher-amplitude shorter-scale phenomena must 
then come into operation, closer to the break-up point *8 ,  r8, to continue the development 
of the tongue. Specifically, the full 3D nonlinear system (2.1) is then reinstated. This is 
mainly because the pressure amplitude p due to (5.10) is becoming of order h(k8 - k)-i, 
which reduces 0(1) when the streamwise distance IX-  h-2k81 reduces to 0(1), from (5.2). 
Simultaneously the Z-scale contracts to 0(1), from (5.1) with (5.10), the induced-vortex 
strength rises to  0(1) also, and of course an 0(1) time scale T is present because of the 
primary wave (2.9). Hence the further evolution of this tongue or streak is controlled by 
the fully nonlinear triple-deck system (2.1). Some computational solutions for such 3D 
unsteady triple-deck flows are given by Smith (1988a), while the likelihood of finite-time 
break-ups occurring even in the full triple-deck framework is shown by Smith (1988b). 

6. "TYPE 111" INTERACTIONS 

Here once again the reasoning concerning the error sizes in (5.la-e) may be modi- 
fied/extended to describe a new kind of nonlinear interaction possible, Type I11 (see also 
Fig. 1). This last type has p being of order unity, i.e. faster spanwise dependence than 
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before, but with h still being small and k again being O(h3) as in the first type of interac- 
tion. So now the vortex-shear influence (5.1~) is also of order unity, balancing the warping 
effect (5.la). 

I 

I 
This Type-I11 nonlinear interaction, in which 

/3- 1 , k -  h3,h << 1 (6 .1)  I 

therefore provokes a nonlinear effect on the whole flow, in particular completely altering 
the mean-flow profile,, despite the smallness [ h  << 11 of the input TS wave. In more detail, 
some allowance has to be made for the logarithmic interplay (see Section 2 )  between the 
buffer and the near-wall zones, and in fact the near-wall zone has the expansion 

h =  I v = h'(v1E + c.c . )  + hI2vu + * * , 

w = h'(wlE + c.c.) + hI2Wu + 
(6 .2b)  

( 6 . 2 ~ )  

now, while in the buffer zone where Y = h - ' y  we have 

-- 
v = h V , ( X , Y , Z )  +"* ,  

w = h 2 W , ( X , Y , Z )  + . - - .  -- 
(6 .3b)  

( 6 . 3 ~ )  

In (6 .2a ) ,  X u ( x , Z )  i:s the unknown vortex-induced shear, and a short- and a long-scale 
streamwise dependence hold, in that 

a a + - + hS- a 
ax ax ax. - 

The subscript v refers to induced-vortex quantities. Also the unknown pressure and dis- 
placement take the farms 

( 6 . 5 ~ )  

(6 .5b)  

p = h'(PE + c.c . )  + - * , 
A = h-'Au + h ' ( h  + c.c . )  + * * 

where, as in ( 6 . 2 ) ,  the smallness of the input TS disturbance is evident. 
The principal feature of the near-wall-zone form in (6 .2 )  is that it involves a small 

perturbation of the unknown shear flow u = XuY and as such it leads at  first order to the 
linear equation 

7 - a 2 P  = 26 a2P 1 aXuaP 
a22 x u  a2 a2 
-- --- ( 6 . 6 ~ )  
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for the TS pressure P, after some working as in Smith (1980). In (6.6a), 2 may be replaced 
by a linear integral of P, stemming from the interaction law (2.lf), or the equivalent upper- 
deck-flow setting may be invoked, i.e. solve 

(a; + a; - a"i, = 0, (6.6b) 

i,=P,afii,=-a2;1at $ = O + ,  (6 .6~)  

with i, bounded at  infinity, to obtain the P - 2 law. Again, with some notation of Section 

(6.6d) 

and a, fl must be real. We observe that (6.6a) looks linear but strong nonlinear dependence 
is still present, nevertheless, through the unknown shear A,. At second order a vortex-flow 
contribution (among others) is induced due to amplitude-squared forcing and that yields 
the logarithmic growth 

similar to the growth described in Section 2, with the subscript v again referring to the 
vortex component. 

The growth (6.7) and the corresponding growths proportional to Y3!nY, YlnY in uu, vu, 
respectively, are responsible for the considerable vortex effect set up in the buffer zone as 
described by (6.3). The controlling equations in this buffer are the full nonlinear 3D 
bound ary-1 ayer equations , 

au, av, aw, - - + =+ - = 0, ax aY az 
u,au, v,au, w,au, - a'u, 
ax dY az aY2 ' 

ax aY az aY' 

-- +-+ 
u,aw, v,aw, + w,awu - a'w, -- +- 

(6 .8~)  

(6.8b) 

(6 .8~)  

from substitution of (6.3) into (2.la-c). It is noteworthy that the induced pressure gradient 
for the vortex motion is negligible here. This is because the main displacement (in (6.5b)) 
associated with (6.3), although of order h-', depends mostly on the slow variable z, not 
the fast one X ,  and hence the corresponding induced pressure p is only O(h5), from (2.lf)  
or from analysis of the upper-deck behavior of the vortex flow, which then provokes a neg- 
ligible feedback in the momentum balances (6.8b,c). Thus the outer boundary conditions 
here are 

U, - Y + A , ( X , Z ) ,  W, + 0 as Y+ 00 (6.8d) 
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where the displacement function A , , ( Y , Z )  is to be found from the solution of (6.8a-c). 
The inner boundary conditions account for the match with (6.2) combined with (6.7), so 
that 

U, = V, = 0, W, = -~;'az[ I P ~ '  + ~-'PZP;] a t  Y = 0. (6.8e) 

Finally here, the unknown vortex shear t 
au, - A, = -=(X,O,Z) 
dY 

links the buffer and near-wall solutions together, providing the overall nonlinear interac- 
tion between (6.6), (6.8). Another noteworthy point, to  repeat, is the smallness of the 
TS amplitude compared with the considerable vortex motion that it provokes; and the 
TS-squared forcing of the vortex motion in the buffer zone is dominated by the effec- 
tive spanwise-slip-velocity condition in (6.8e); other forcings such as those through the 
momentum equations are of less importance, at least at  the current stage. 

The full Type-I11 interaction is controlled then by (6.8a-e) subject to (6.6), (6.9), for 

Secondary instability of a 2D TS input can be established as for the previous Types I, I1 
and as for the channel-flow interaction of Hall and Smith (1988b). The secondary instability 
of the pure 2D state, i.e. P = Po(- with U, = T,V, = W, = 0 and a = a0 = df ,  A, = 1 

(which gives an exact solution of the system), arises as a small 3D perturbation in the 
form 

the driven vortex flaw and the driven TS pressure, respectively. 

[e 2, Vu, vu, Wu] = [Po, Ao,T,O, 01 

+ t i [ ~ ( l )  COS ~ I Z ,  ~ ( l )  COS PZ, u(') COS PZ, v(') COS PZ, ~ ( l )  sin PZ] + - - - (6.10) 

and A, = 1 + 6A(') cos PZ + - .  -, with 6 being small. Here we take the case of Po, A0 being 
constant, within the present length scales, and all the 2-dependence is as shown explicitly 
in (6.10). The 3D induced-vortex flow is therefore controlled by the linearized equations, 
from (6.8a-e), 

u;) + v p  + pw(') = 0, (6.1 1 a) 

(6.1 1 b) 

(6.1 1 c )  

subject to the constraints 
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with the last condition representing the TS-forcing effect. Along with this, the TS pertur- 
bation satisfies, from (6.6), 

(p2 + cy;)P(') = a:A(') + UX(')Poa;', (6.1 If 

(ai + p2)  $p(')  = &:A('). (6.119) 

Here (6.11g) follows from (6.6b,c) and PO = aoA0, while U = [s- 5 P(oAi0 ,-(l+$)]a; = -a;?, 
eo, 2 are defined just prior to (2.12b) and in (2.15), respectively, and the vortex-forcing term 
is A(') aU(') (x, 0) lay. The whole 3D perturbation is governed by the interactive system 
(6.11a-g) or by its integro-differential counterpart analogous to that in Appendix A. So 
the spatial development of the perturbation with downstream distance is in general a 
nonparallel one, starting from input conditions a t  some finite station upstream. We turn 
therefore to the far-downstream response where spatial instability is proposed, 

say, and similarily for the other variables, with the constant growth factor s to be found. 
Then the vortex part (6.11a-e) yields 

(6 .13~)  

(6.13b) 

I with IC(") EE p[POP(')* + c.c.], so that the vortex skin-friction factor is 

, Hence the TS part (6.11f,g) reduces to the complex linear equation 

(6.1 3c) 

(6.14) 

where I' = -Ai'(O)/Ai(O) is a positive constant. The real and imaginary parts of (6.14) 
then provide an eigenrelation for the determination of s, giving the result 

So the main properties of the growth factor s are that, first, it is real and positive, since 
X ,  > 0; second, s decreases monotonically with increasing spanwise wavenumber p, from 
the O(1)  value so at p = O+ to is0 as p -+ 00, where s t  41'XrlPo12, and hence the 

2 - 
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fastest growth is for nearly planar secondary modes, cf. Sections 4,5; third, s increases 
monotonically with IPc,I, like \Pols; and, fourth, this secondary growth is present if and only 
if the input 2D TS amplitude [Pol is present. Other aspects are similar to those in Section 
4 including the spanwise focussing associated with the large-/3 instability for initial-value 
problems. 

Secondary instability of a similar kind also occurs at  relatively high frequencies. 
In the nonlinear regime there are several options which could be put forward for the 

ultimate behavior of the full interaction (6.6), (6.8), (6.9) as the downstream distance 
increases, some of the options resembling those in Section 4. Again, the Type-I11 interaction 
connects up with a glo'bal-scale nonlinear interaction currently being studied by the author 
and Professor P. Hall. The Type-I11 interaction involves short-scale/long-scale balancing 
(via (6.4)) and it is clearly a robust one in that it changes the mean-flow characteristics (see 
(6.3)), even though the TS amplitude is still small (see (6.2)). Its full nonlinear properties 
remain to be studied. 

7. FURTHER COMMENTS 

We finish by noting the following items (a)-(f) on the nonlinear TS/vortex interactions 
studied above. 

(a) Each of the thrfee Types 1-111 of interaction addressed in this work can be triggered 
by the input disturbance upstream, depending on the latter's amplitude spectrum as in- 
dicated by the sizes specified in (2.2), (5.2), (6.1) [see also (d) below]. Alternatively, each 
interaction can start as a form of secondary 3D stability of the 2D TS input upstream. 
Beyond that however nonlinearity takes control. 

(b) There are some connections between the three Types 1-11, as their governing equa- 
tions in Sections 4-6 suggest, and a match can be established also with the Hall and Smith 
(1988a) study concerning oblique TS waves. Further, the main options 5,6 for the behavior 
of the Type I nonlinear interaction may lead on into the Type 111, I1 interactions, respec- 
tively, downstream. Type I1 has a faster streamwise response than Type I, while Type I11 
has a faster spanwise dependence: see the scales in Sections 2,5,6. 

(c) The Types 11, HI appear to  be much more powerful and dangerous nonlinear inter- 
actions than Type I. Type I11 involves only a small TS amplitude (see (6.2)) but despite 
that the mean-flow profile is completely altered (see (6.3)), due to  the induced vortex 
motion. Similarly, Type I1 starts with small TS amplitudes (see (5.2)) but the ensuing 
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finite-distance break-up then causes the full triple-deck system (2.1) to be triggered [Smith 
1988a,b], thus completely altering the mean-flow profile again. 

(d) By-pass transition processes are also possible and of much interest. They are 
associated with other scales of input upstream, say, and in principle these can activate 
all the options 1-6 described for the Type-I interaction and the corresponding options 
available for Type I11 as well. These and other subsequent stages seem to merit further 
research. 

(e) The extra effects of wall curvature, cross flow and compressibility on the nonlinear 
interactions remain to be studied. All three can be captured by modifications of the triple- 
deck starting point (2.1) for instance: see earlier studies of compressibility effects in Smith 
(1987), cross-flow effects in Stewart and Smith (1987) and wall-curvature effects in Hall and 
Smith (1987, 1988b), among others. In turn, any of the three effects could be incorporated 
initially as an extra contribution to the nonlinear interaction equations of Sections 4-6, 
and it would be interesting to see their influence on the interactive flow properties. 

(f) No quantitative comparisons with transition experiments [see earlier references] have 
been attempted yet, but the possibility of a reasonably firm link exists there in view of 
the predicted formation of streak-like behavior (among other phenomena), with spanwise 
concentrations of the vortex flow and the TS amplitudes (Sections 4-6). 
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APPENDIX A: A:N INTEGRAL FORMULATION FOR THE TYPE I IN- 
TERACTION 

An integral formu:la for the vortex skin-friction factor X S ( 8 , q  can be obtained from 
the vortex-flow equations (4.la-d). A Fourier or Laplace transform in 2, for instance, 
enables the solution flor the transforms of W,T to be expressed in terms of the functions 
M ,  N introduced in (4.8a,b). Hence we find the result 

I 

I 
I 

I 

in the case of a vortex flow starting from rest, or zero shear, at a station 2 = 20, say. 
Here the constants g1,gZ are given by 

with e1,ez specified just after (4.8b). 
So the nonlinear Type-I interaction can be written concisely in an integro-differential 

form, by coupling (AI.) with (4.le). This reproduces the governing equations for all the 
options 1-6 presented in Section 4. A similar formulation can be constructed for the 
oblique-wave/vortex interaction in Hall and Smith (1988a) and is used in the wave/vortex 
interactions being studied by Mr. N. D. Blackaby and Mr. P. A. Stewart. 
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FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Nonlinear interaction Types 1-111 between long-scale vortices and short- 
scale waves, in normalized coordinates, for waves of low input amplitude 
O(h). The values of the length scales ,8-', k-' for 1-111 are given in the 
text (sections 2,5,6 in turn). 

The scaled 3D spatial growth rate 7 versus spanwise wavenumber p for 
various input 2D amplitudes ro, in secondary instability for Type-I inter- 
act ion. 

The square-root spatial breakdown of the wave amplitude (option 6) for 
Type-I nonlinear interactions, due to the vortex-shear effect (A,), leading 
to shortening of the interaction length scale. 

Nonlinear breakdown of the Type-I1 interaction, via spanwise focussing 
and spatial blow-up of the wave amplitude. 
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